NANOTECNOLOGÍA
Imagen
INTRODUCCIÓN
NANOTECNOLOGÍA
INTEGRANTES
 
NANOTECNOLOGÍA
   
   
imagen
Descripción:
La nanotecnología es la tecnología que nos permite fabricar cosas a escala nanométrica (se abrevia nm.) que equivale a la millonésima parte de un milímetro o la billonésima parte de un metro.
También se le puede definir como la ciencia que manipula en forma individual átomos y moléculas para crear maquinarias de tamaño molecular, que usualmente se mide en nanómetros.
Así como las computadoras 'rompen' la información a su más básica forma, es decir, 1 y 0, la nanotecnología juega con la materia en sus más elementales formas: átomos y moléculas.

Con una computadora -una vez que la información se ha convertido y organizado en combinaciones de 1 y 0- la información se puede reproducir y distribuir fácilmente. Con la materia, los elementos básicos de la construcción molecular son los átomos, y la combinación de átomos se convierten en moléculas. La nanotecnología le permite manipular estos átomos y moléculas, haciendo posible la fabricación, reproducción y distribución de cualquier sustancia conocida por el hombre, tan fácil y barata como reproducir datos en una computadora.

1.2 Un gran paso para la Nanotecnología:
Los físicos G. Binning y H. Rorher, del laboratorio de IBM en Zurich, desarrollaron el microscopio de efecto túnel, un nuevo concepto de microscopía que permitió observar por primera vez los átomos individualizados. En 1985, los mismos investigadores desarrollan el microscopio de fuerza atómica.
El efecto túnel.-
El microscopio de efecto túnel dispone de una punta tan afilada que su extremo está compuesto por un solo átomo. Por ella fluye una débil corriente eléctrica. Esta punta se aproxima al material que se va a estudiar hasta situarse a menos de un nanómetro (millonésima de metro) de distancia, manteniendo con la muestra una diferencia de potencial de 1 voltio. Mientras va recorriendo la superficie, la punta se mueve hacia arriba o hacia abajo, reproduciendo la topografía atómica de la muestra.
Fuerza atómica.-
El microscopio de fuerza atómica (AFM) es muy similar al de efecto túnel; pero, en lugar de utilizar la diferencia de potencial, está en contacto directo con la muestra y detecta los efectos de las fuerzas atómicas. Su resolución es parecida a la del anterior, pero tiene la ventaja de poder ser utilizado para observar muestras no conductoras, como las biológicas.
Modulando el voltaje que llega a la punta, estos microscopios pueden no solo ver átomos, sino moverlos, colocarlos y manipularlos.

1.3. Nanologo de IBM
En 1990, científicos de la IBM consiguieron escribir el logotipo de su empresa a escala atómica. Como “tinta” utilizaron 35 átomos de xenón; “el papel” fue una lámina de metal cristalino, y el “lápiz”, un microscopio de efecto túnel, con el que lograron mover y colocar los átomos. La altura de las letras fue de unas 5 millonésimas de milímetro, y la separación entre los átomos que conformaban el logotipo fue 13 millones de veces más delgada que un cabello humano. Después, fotografiaron su proeza utilizando el mismo microscopio de efecto túnel.
Desde ese momento histórico, la nanotecnología dejó de ser la idea fantástica que por primera vez planteara el físico Richard Feynman en 1959, para convertirse en una tecnología concreta, aunque aún en su infancia.
1.4. Perspectivas sobre nanotecnología
Actualmente, alrededor de 40 laboratorios en todo el mundo canalizan grandes cantidades de dinero para la investigación en nanotecnología. Unas 300 empresas tienen el término nano en su nombre, aunque todavía hay muy pocos productos en el mercado.
Algunos gigantes del mundo informático como IBM, Hewlett - Packard (HP), NEC e Intel están invirtiendo millones de dólares al año en el tema. Los gobiernos del llamado Primer Mundo también se han tomado el tema muy en serio, con el claro liderazgo del gobierno estadounidense, que para este año ha destinado 570 millones de dólares a su National Nanotechnology Initiative.
En España, los científicos hablan de nanopresupuestos. Pero el interés crece, ya que ha habido un par de congresos sobre el tema: en Sevilla, en la Fundación San Telmo, sobre oportunidades de inversión, y en Madrid, con una reunión entre responsables de centros de nanotecnología de Francia, Alemania y Reino Unido en la Universidad Autónoma.
El motivo de tanto interés no es extraño. La nanotecnología tiene potencial para cambiarlo todo: las medicinas y la cirugía, la potencia de la informática, los suministros de energía, los alimentos, los vehículos, las técnicas de construcción de edificios y la manufactura de tejidos. Muchas cosas más que ni imaginamos.
Hasta el momento, los avances en nanotecnología han dejado solamente un material nuevo, pero que está generando aplicaciones revolucionarias por todos lados: los nanotubos. No obstante el mayor obstáculo en el desarrollo de nanomateriales sigue siendo la manipulación de moléculas. Actualmente, los investigadores construyen nanoestructuras cogiendo una molécula por vez; pero para producirlos a escala masiva para el mercado, deberán primero aprender a manejar con precisión miles e incluso millones de moléculas de un solo tirón.
2.1. Buckyballs
En 1985, investigadores de la Universidad de Rice, EE.UU., observaron que condensando carbono vaporizado en un medio inerte, este formaba estructuras perfectamente redondas de 60 átomos, similares a una pelota de fútbol compuesta por paños hexagonales. Estas moléculas fueron bautizadas como buckyballs, y constituyen el descubrimiento más famoso en la corta historia de la nanotecnología, algo que le valió al grupo el Premio Nobel de Química 1996.
Imagen
II. NANOINFORMATICA
Donde la nanotecnología va tener más influencia es en el campo de la computación y comunicaciones debido en parte a que estos han sido los motores de su desarrollo.
Las cosas han cambiado mucho desde las primeras computadoras electrónicas. El ENIAC I fue desarrollado en la Universidad de Pennsylvania en 1945. Estaba compuesto por más de 70.000 resistencias, 18.000 válvulas y 10.000 condensadores; pesaba 30.000 Kilos y ocupaba 1.300 metros cuadrados.
Pero el descubrimiento del chip, a mediados de los años setenta, ha reducido, por suerte para todos, el tamaño de los ordenadores. El primer 486 utilizaba tecnología de una micra (millonésima parte de un metro). Hasta hace poco tiempo, los Pentium tradicionales utilizaban tecnología de 0.35 y 0.25 micras. Los modelos más modernos han reducido este valor hasta 0.13 micras. El nanómetro marcará el límite de reducción a que podemos llegar cuando hablamos de objetos materiales, en este caso dispositivos computacionales.
La velocidad de los ordenadores y su capacidad de almacenamiento han sido las principales barreras en el desarrollo de la inteligencia artificial. Con la nanotecnología aparece la posibilidad de compactar la información hasta límites inimaginables y crear chips con memorias de un terabit por centímetro cuadrado. Un Terabit es la capacidad de la memoria humana, lo que quiere decir que los ordenadores del futuro podrán llegar a tener inteligencia propia, es decir, serán capaces de aprender, tomar decisiones y resolver problemas y situaciones "imprevistas", ya que con esta memoria se les podrá dotar de códigos extremadamente complejos. Según los expertos, esto se puede conseguir en un plazo de no más de cinco años. Lógicamente, con ordenadores tan pequeños, los dispositivos de uso también cambiarán. Al tiempo que evoluciona la tecnología de reconocimiento de voz y de escritura, se irán desarrollando otro tipo de "ordenadores personales" en miniatura, casi invisibles, insertados en objetos de uso común como un anillo, por ejemplo, o implantados en nuestro propio organismo en forma de lentillas o chips subcutáneos.
También es necesario fabricar otros conductores, porque los existentes no sirven. Los experimentos con nanotubos de carbón (milmillonésima parte de un metro) para la conducción de información entre las moléculas ya han dado resultados. IBM anunció que ha conseguido crear un circuito lógico de ordenador con una sola molécula de carbono, una estructura con forma de cilindro 100.000 veces más fino que un cabello. Este proyecto permite introducir 10.000 transistores en el espacio que ocupa uno de silicio.
La posibilidad de desarrollar mini ordenadores de cien a mil veces más potentes que los actuales podría suponer que éstos tuvieran inteligencia propia, lo que cambiaría los sistemas de comunicaciones. Por ejemplo, los datos podrían transmitirse con imágenes visuales mediante "displays" incorporados en forma de lentillas. La comunicación telefónica se realizaría por audio conferencias en 8 o 10 idiomas.
En un futuro no muy lejano, los PCS estarán compuestos, en lugar de transistores, por otros componentes como las moléculas, neuronas, bacterias u otros métodos de transmisión de información. Entre estos proyectos se encuentra el futuro ordenador "químico", desarrollado por científicos de Hewlett-Packard y de la Universidad de California (Los Ángeles). Los circuitos de este nuevo modelo son moléculas, lo que supone transistores con un tamaño millones de veces más pequeños que los actuales.

Esto es uno de los aspectos más interesantes ya que no sólo se podrá desarrollar máquinas mucho más pequeñas que una bacteria o una célula humana. Además, se puede empezar a tomar elementos del mundo biológico –por ejemplo, trocitos de ADN para procesadores de ordenadores. Así, científicos del grupo de investigación Montemagno de la Universidad de Cornell han logrado unir ya elementos biológicos y mecánicos creando pequeños motores del tamaño de un virus. Aunque aún faltan muchas cosas por afinar, estos motores podrían trabajar en el interior de una célula humana. Así también en el mes de noviembre del 2001 científicos israelitas, presentaron una computadora con el ADN tan diminuta que un millón de ellas podría caber en un tubo de ensayo y realizar 1.000 millones de operaciones por segundo con un 99,8 por ciento de precisión. Es la primera máquina de computación programable de forma autónoma en la cual la entrada de datos, el software y las piezas están formados por biomoléculas. Los programas de la microscópica computadora están formados por moléculas de ADN que almacenan y procesan la información codificada en organismos vivos.
El proyecto de chip molecular sustituirá al silicio y a la óptica. Se prevé que se podrán fabricar computadoras del tamaño de una mota de polvo y miles de veces más potentes que los existentes. De momento, se ha conseguido simular el cambio de una molécula, mediante su rotura, pero falta crear moléculas que se curven sin romperse
3.1. Dispositivos nanoinformáticos
Usando nanotubos semiconductores, investigadores de varias empresas y laboratorios han desarrollado circuitos de computación de funcionamiento lógico y transistores, las puertas electrónicas lógicas de que están compuestos los chips.
En agosto del año pasado, en lo que es considerado un paso fundamental hacia la computadora molecular, IBM mostró el primer circuito de ordenamiento lógico formado por nanotubos de carbono. Las computadoras moleculares basadas en estos circuitos tienen el potencial de ser mucho más pequeñas y rápidas que la actuales, además de consumir una cantidad considerablemente menor de energia.
En cuanto a los transistores, los Laboratorios Bell de Lucent Technologies mostraron en octubre del 2001 un transistor de escala molecular con la misma capacidad que el clásico transistor de silicio. Intel no ha mostrado ninguna investigación relacionada a los nanotubos, pero trabajando con silicio a escala nanométrica, la compañía hizo, también el año pasado, otro anuncio igualmente espectacular el transistor de silicio más rápido jamás producido, de apenas veinte nanómetros.
El transistor se enciende y se apaga -recordemos el 1 y el 0 del sistema binario, que forma la base de la informática- más de mil millones de veces por segundo, un 25% más veloz que los transistores más recientes. Para el 2007, Intel espera estar fabricando chips conteniendo mil millones de estos transistores, lo que le permitiría llegar a una velocidad de 20 Ghz. con la energía de un voltio.
En cuanto a memorias, IBM anunció hace apenas cinco meses que su proyecto de nombre código Millipede, que pretende crear capacidades mayores a las existentes, se basa en procesos de escala nanométrica. Este dispositivo de almacenamiento regrabable, de alta capacidad y densidad, trabaja en base a mil pequeñas agujas similares a las del microscopio AFM, con puntas capaces de tocar átomos individuales y escribir, leer y borrar así grandes cantidades de información en un espacio mínimo. De apenas nueve milímetros cuadrados, los investigadores de IBM estiman que en los próximos años, la tecnología Millipede puede superar la capacidad de la tecnología de memoria Flash en cinco veces o más.
Este tipo de desarrollos -tanto los nanotransistores, como las nanomemorias pueden ser cruciales para absorber las crecientes e inmensas capacidades de procesamiento y memoria que demandan los desarrollos multimedia, más aún cuando se avizora que de acá a máximo diez años la tecnología actual de semiconductores habrá agotado sus posibilidades de crecimiento.
En cuanto a alimentación, la corporación japonesa NEC, junto a otros institutos de investigación; ha anunciado el desarrollo de una célula de carburante con una capacidad diez veces mayor que una batería de litio, pero de tamaño diminuto, en lo que constituye otra aplicación de los nanotubos de carbono, esta vez como electrodos. En el futuro próximo, esta batería le podría permitir a dispositivos portátiles, como las notebooks, funcionar varios días seguidos sin conectarse a la corriente.
Los desarrollos en Nanotecnología se están aplicando también a los sistemas de seguridad. La empresa taiwanesa Biowell Technology presentó, un sintetizado que puede utilizarse para probar la autenticidad de pasaportes y otros documentos y tarjetas, con el fin de evitar el pirateo.
Este chip podrá utilizarse también en tarjetas de débito, carnés, matrículas de automóviles, permisos de conducir, discos compactos, DVD, programas informáticos, títulos y valores, bonos, libretas bancarias, antigüedades, pinturas, y otras aplicaciones en las que se necesite comprobar la autenticidad.

3.2. Nanosatelites
Las aplicaciones más inmediatas de la Nanotecnología se dirigen al sector de la exploración espacial. Entre éstas, podemos hablar de bases de lanzamiento de gran altitud, estaciones espaciales, vehículos ligeros y muy resitentes, naves personales para viajar por el espacio o los conocidos nanosatélites, como el NANOSAT, un proyecto de desarrollo de un nanosatélite español, iniciado en 1995.
El NANOSAT parte de un concepto ideado en el INTA y cuya gestión y construcción se realiza totalmente en España, partiendo de una nueva filosofía de diseño: más pequeño, más potente, más rápido, con una aplicación específica concreta, con mayores prestaciones y menor consumo. El éxito en este proyecto de vanguardia puede suponer una importante presencia española en la futura "pequeña revolución en el espacio".

imagen
     
     
   
Escríbeme
Para más información